Making Kathmandu Walk Again

: Planning and Designing for People Friendly Kathmandu

Sagar Onta, PE, PTOE Denver Engineering Director Toole Design Group

NEA Talk Program Kathmandu, Nepal August 2018

Toole Design Group

Toole Design Group is the nation's leading planning, engineering, and landscape architecture firm specializing in multimodal transportation.

Work Experience Across North America

Toole Design Group

- WTS Colorado 2017 Employer of the Year
 - Women-owned
 - Of the 10 primary offices, half are led by women

150+ EMPLOYEES 13 OFFICES WOMEN DESIGNERS

Our guidance work

ACHIEVING MULTIMODAL NETWORKS APPLYING DESIGN FLEXIBILITY & REDUCING CONFLICTS

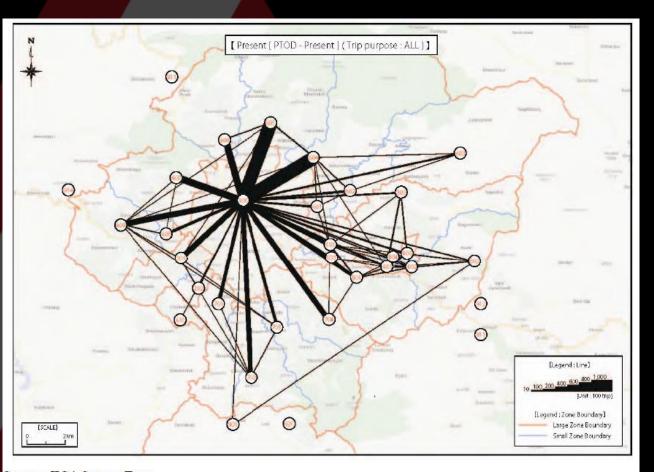
FHWA Achieving Multimodal Networks: Applying Design Flexibility & Reducing Conflicts

Massachusetts DOT Separated Bike Lane Planning & Design Guide

Guide for the Development of

AASHTO Guide for the Development of Bicycle Facilities

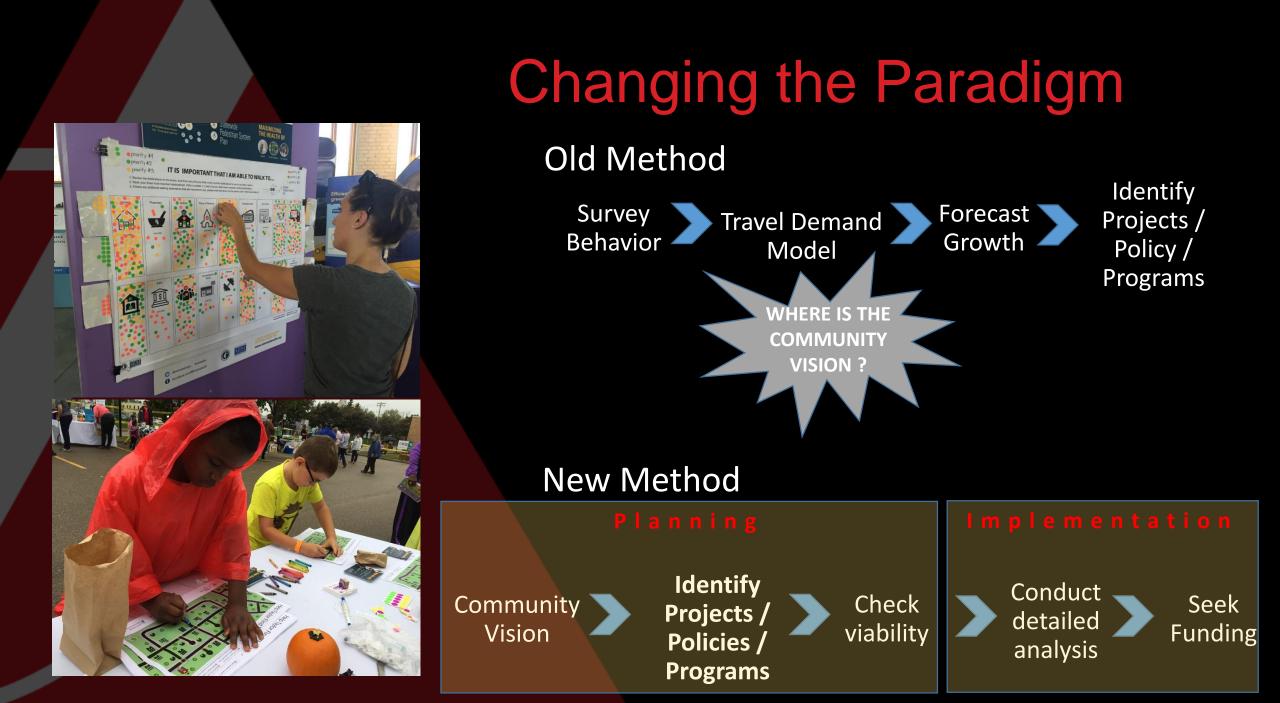
and Bicycle Transportation Along Existing Roads


TRANSPORTATION RESEARCH BOARD

NCHRP 803 Pedestrian

NATIONAL COOPERATIVE HIGHWAY RESEARCH

REPORT 803


Pedestrian and Bicycle Transportation Along Existing Roads—ActiveTrans **Priority Tool Guidebook**

Source: JICA Survey Team Figure 6.1.18 Person Trip Desire Line Map (All Purposes)

Transportation Planning Challenges

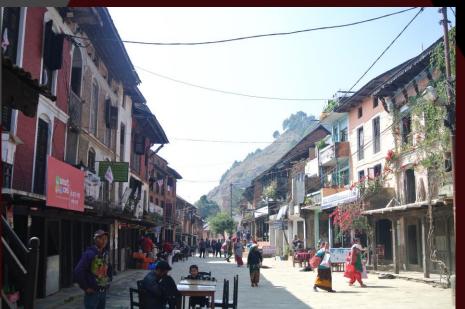
- Expensive to model travel demand for many cities
- TAZ do not match City's preferred zones
- Available model outputs may not include City's priority projects
- Emerging technologies are likely to dramatically transform travel behavior in the next 20-30 years – Difficult (if not impossible) to predict behavior

Carlo

Back to the Basics

- Rely on core principles on how transportation can make communities
 - Economically vibrant
 - Entrepreneurial and innovative
 - Socially harmonious and safe

Transportation that is:



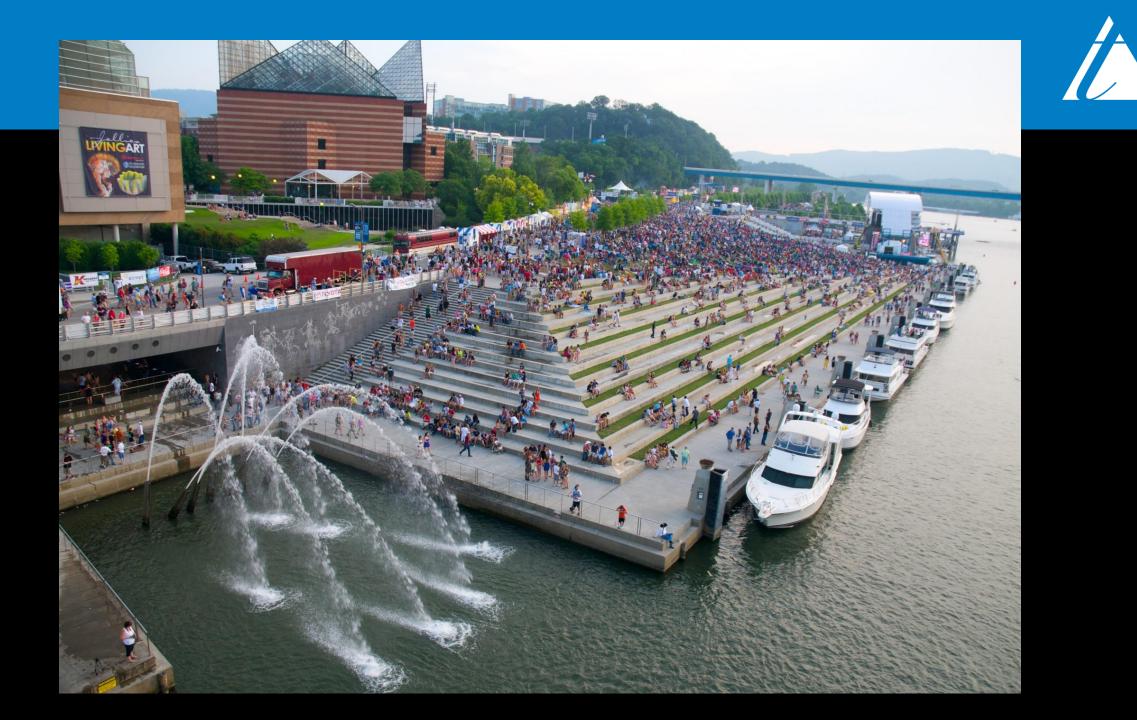
Highway vs Urban Street

- Basic engineering education and practice focuses on high-speed highways connecting cities for:
 - Support economic development
 - Reducing time/cost of transportation
- Same philosophy is used for Urban Streets inside cities which is WRONG
- Transportation within cities :
 - Is not a means to an end
 - Is big part of living in cities livability
 - Should be stress-free and enjoyable

Paradigm Shift

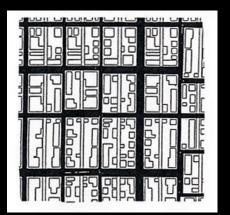
- Do not build roads to meet future demand
- Plan and build cities/roads to reduce travel demand and change behavior
 - Do not expand area of cities i.e. no outer ringroad
 - Provide safe bicycle and pedestrian infrastructures
 - Go high, not wide
 - Do not widen existing streets for vehicular capacity, instead build new street connections to distribute traffic

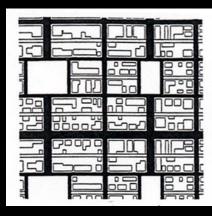
With 2020 hindsight, you decide the truth:

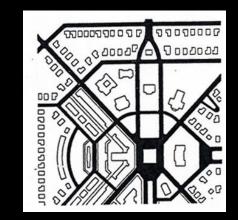


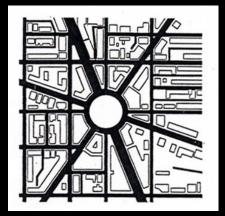
Option A: "The City's lifeblood is the highway. The mobility it provides is vital for economic health and the convenience of the motoring public. If anything, the highway should be expanded to fight congestion. Removing it is simply anti-progress."

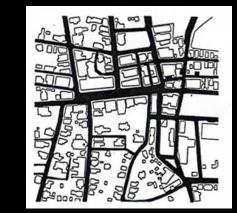
Option B: "Walkability and access to the waterfront, parks, trails, and other places in the downtown is key to the economic and social health of the City. The highway has contributed to the woes of the City and needs to be replaced with something that contributes to an urban context."

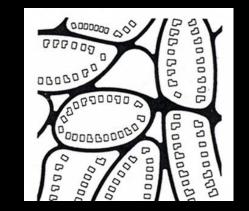


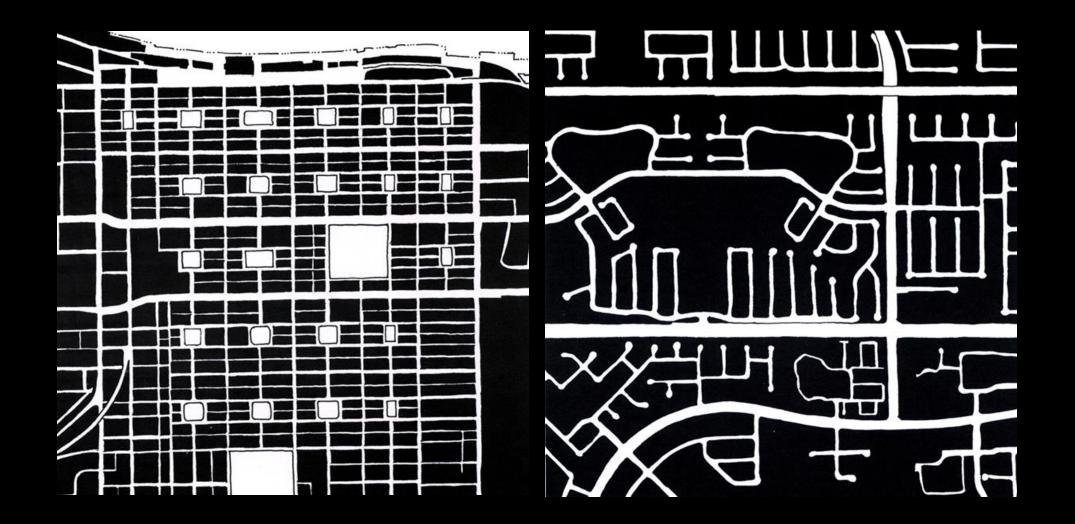


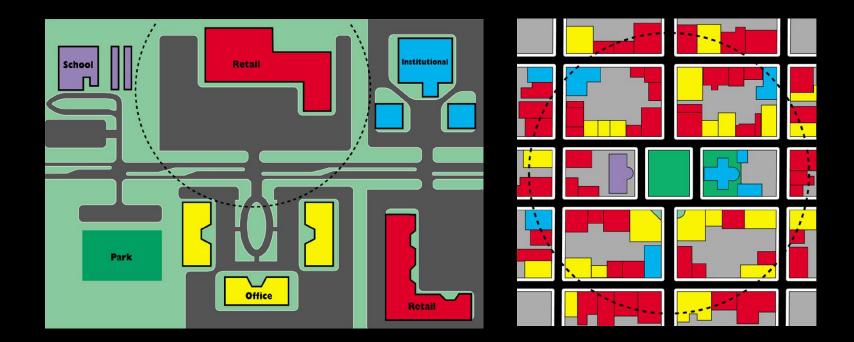


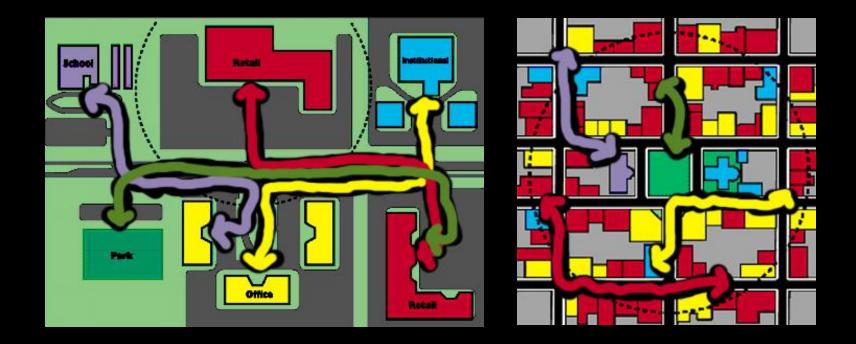

Connected Street Networks



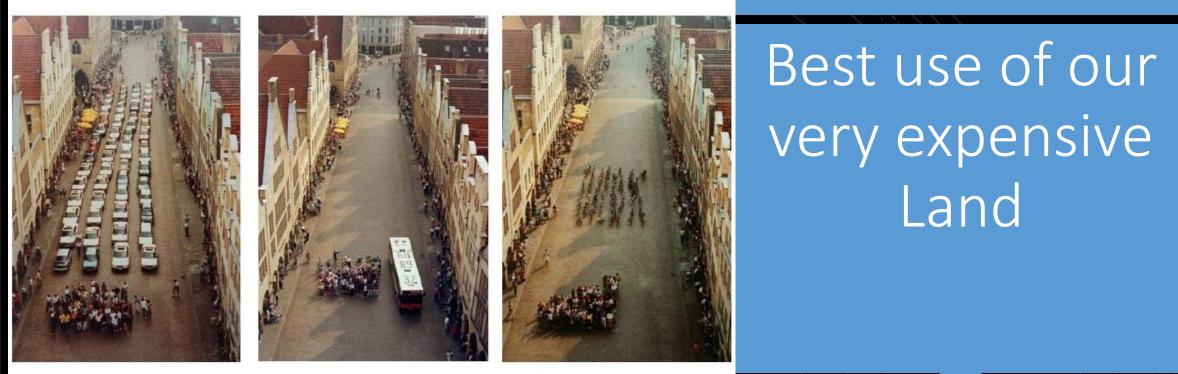




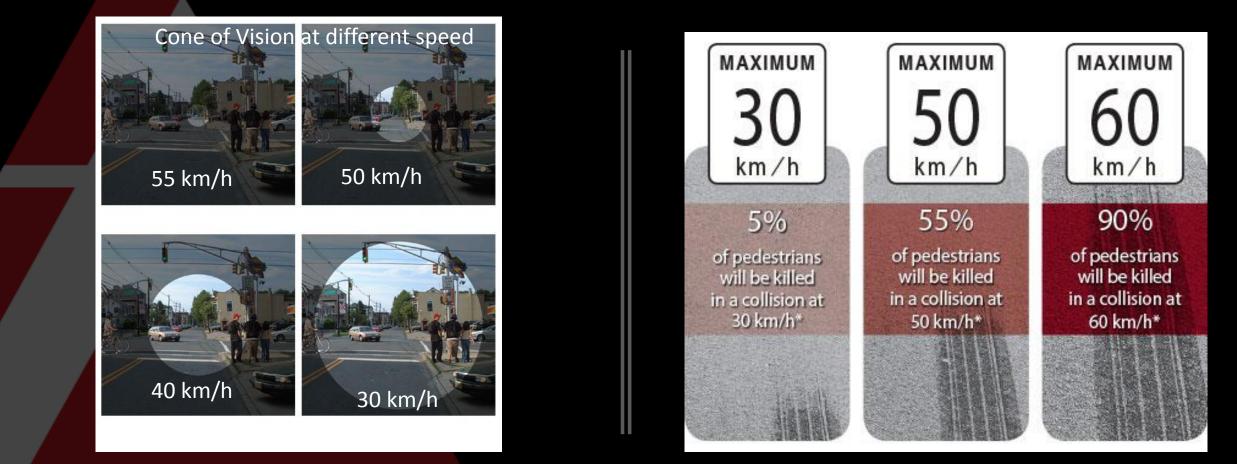

Streets are backbone of a City







What is a City?

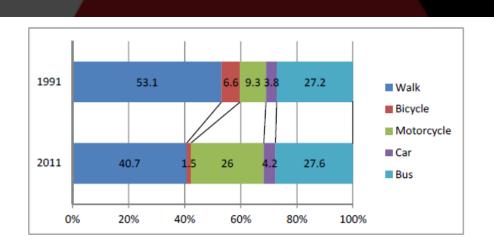

- Land/River make the best use
- **People** make them safe
- Economy make it vibrant
- Heritage preserve it

Efficient use of urban space

The amount of space required to transport the 60 persons by different modes

Make people safe

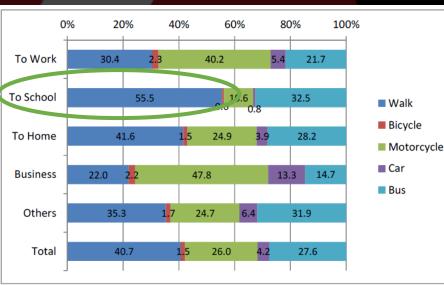
Economy that is vibrant


- Less government red-tape
- More people walking = high no of interactions = share ideas = innovation and entrepreneurial
- We are social animals

Preserve heritage Walking is our heritage !!

Travel Preference in KTM

Table 6.1.8 Trip Composition by Mode								
Travel Mode	Number of Trips	Percentage						
Walk	1,398,378	40.7						
Bicycle	52,445	1.5						
Motorcycle	893,126	26.0						
Car	145,980	4.2						
Bus	948,464	27.6						
Total	3,438,393	100.0						
		,						


Source: JICA Survey Team

Source: JICA Survey Team Figure 6.1.24 Comparison of Travel Modes between 1991 and 2011

- Walking is still the king
- Walking should be promoted :
 - For health
 - For social harmony
 - For innovative interactions

How to Make KTM Walk Again

Source: ЛСА Survey Team Figure 6.1.25 Travel Mode by Trip Purpose

- Design streets that are safe and inviting
- City defines project
- Donor/city selects consultant/facilitator based on experience working with community, not how many big projects they have completed
- Urban Designer to lead projects, supported by engineers

Community Led Infrastructure Development

- Day 1: Site visit, public meeting to hear from community what they like, dislike and core values
- Day 2-3: Work from city offices, open to public, meeting with stakeholders, mayors, department heads
- Day 4: Draw conceptual designs based on public input, public meeting to present to all

One of the biggest circles

The Process

Big circles manage traffic by making it smaller or no traffic

1,100 ft.

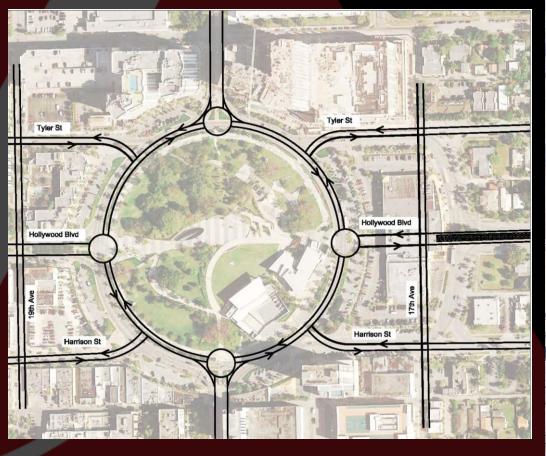
430 ft. 1,200 ft.

1,140 ft.

8

9

10


11

Options

Options Comparison

Description	Walk- ability	Pedestiran Safety	Historic Compatibility	Access to Park	Bike friendly	Direct ness	Event Closures	Traffic Flow	Total
Remove Signals								₩	1
1 + Ped Bridge		*						∗	2
1 + Underpass	*	*		÷				*	4
Tweaks & Slow	¥	₩		*	*			₩	5
By-Pass				*		*	*	*	4
Calm Flow	*	₩	÷	₩	*	*	*	₩	8
Stop n Go	*	₩	÷	*	*	*	¥		7
Network Options	¥	₩		¥	₩	₩	÷	*	7
US 1 Tunnel	*	*	*	*	*		*	₩	7
Central Roundabout	*	*		÷	÷	*		₩	6
Flow Meter	¥	₩	*	¥				∗	5

The Product

Community Guided Infrastructure Development

- All projects must be guided by the community
- Design may be conducted in consultant offices but it must very guided / checked / verified by the community
- Need the process to be transparent
 - Public meetings on government plans
 - Public meetings to review design concepts
 - Public accountability/inspection during construction


Fort Collins stakeholders attend an open house about the Bicycle Master Plan

Pedestrianize core cities

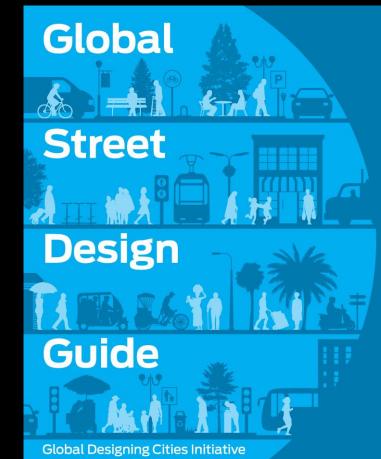
- Work with businesses and residents
 - Thamel to Basantapur
 - May be provide electric scooters for mobility
 - Assign shop in each block to manage scooter

• All historic areas of Patan, Bhaktapur, Thimi, Kritipur

Engineers – be accountable

- Implement adopted policy and standards
- Use sound engineering judgement
 - KTM roads are NOT engineered
 - Roadway alignment are not made for safe travel
 - Don't use current alignment to widen roads
 - Change alignment to make it safe
 - Able to see around corners (intersection sight distance)
 - Will require additional property takes
 - Include in cost of project
 - Don't allow vehicles in construction zones !!

People friendly streets


URBAN STREET 14.2 m ROW minimum

- Adopt and follow Global Street Design Guide
- Published by NACTO, National Association of City Transportation Officials

https://nacto.org/global -street-design-guidegsdg/

Contents

Forewords	XIII-XV	
Prioritizing People in Street Designs	XVI	
About the Guide	XVII	
Streets Around the World	XVIII	
Global Influences	XX	
A New Approach to Street Design	XXII	
How to Use the Guide	XXIV	

Section A: Street Design Guidance

3

9

10

12

14

16

19

-20

22

24

26

28

30

32

34

38

38

32

40

43

44

48

1 Defining Streets

- What is a Street 1.1
- Shifting the Measure of Success 1.2 1.3 The Economy of Streets
- 1.4
- Streets for Environmental Sustainability 1.5 Safe Streets Save Lives
- 1.6 Streets Shape People
- 1.7 Multimodal Streets Serve More People
- 1.8 What is Possible

2 Shaping Streets

3

_

Ī	2.1	The Process of Shaping Streets	
	2.2	Aligning with City and Regional Agendas	
	2.3	Involving the Right Stakeholders	
	2.4	Setting a Project Vision	
	2.5	Communication and Engagement	
	2.6	Costs and Budgets	
	2.7	Phasing and Interim Strategies	
	2.8	Coordination and Project Management	
	2.9	Implementation and Materials	
	2.10	Management	
	2.11	Maintenance	
	2.12	Institutionalizing Change	
	Moos	uring and Evaluating Streats	
Ī	3.1	How to Measure Streets	
	3.2	Summary Chart	

nary Chart Measuring the Street 3.3

Section B:	Street [Design Guida	nce
	aller a	THE REAL PROPERTY.	
	Bue A	1 All	alarma a
SQL IF		LANK NA	
1	0	0/	T

53

54

-57

58

60

62

64 _

67

68

70 _

72

72

72

73

74

76

78

79

80

82 84

84

86

88

89

90 91

_

4	Desig	ning Streets for Great Cities	
	4.1	Key Design Principles	
5	Desig	ning Streets for Place	
	5.1	Defining Place	
	5.2	Local and Regional Contexts	
	5.3	Immediate Context	
	5.4	Changing Contexts	
6	Desig	ning Streets for People	_
	6.1	A Variety of Street Users	
	6.2	Comparing Street Users	
	6.3	Designing for Pedestrians	
	6.3.1	Overview	
		Speed	
		Variations	
	6.3.2	Pedestrian Networks	
	6.3.3	Pedestrian Toolbox	
	6.3.4	Sidewalks	
		Sidewalk Types	
		Geometry	
		Design Guidance	
	6.3.5	Pedestrian Crossings	
		Design Guidance	
		Crossing Types	
	6.3.6	Pedestrian Refuges	
	6.3.7	Sidewalk Extensions	
	6.3.8	Universal Accessibility	
		Wayfinding	

6.4	Designing for Cyclists	92
6.4.1	Overview	92
	Speed	9.2
	Variations	93
	Levels of Comfort	93
6.4.2	Cycle Networks	94
6.4.3	Cyclist Toolbox	96
6.4.4	Cycle Facilities	98
	Facility Types	99
	Geometry	100
	Cycle Facilities at Transit Stops	102
	Protected Cycle Facilities at Intersections	102
	Cycle Signals	103
	Filtered Permeability	103
	Conflict Zone Markings	103
6.4.5	Cycle Share	104
6.5	Designing for Transit Riders	106
6.5.1	Overview	106
	Speed	106
	Variations	107
6.5.2	Transit Networks	108
6.5.3	Transit Toolbox	110
6.5.4	Transit Facilities	112
	Facility Types	113
	Geometry	114
6.5.5	Transit Stops	116
	Stop Types	116
	Stop Placement	118
6.5.6	Additional Guidance	119
	Sharing Transit Lanes with Cycles	119
	Contraflow Lanes on One-Way Streets	119
	Rest Areas	119
6.6	Designing for Motorists	120
6.6.1	Overview	120
	Speed	120
	Variations	121
6.6.2	Motorist Networks	122
6.6.3	Motorist Toolbox	124
	Travel Lanes	126
6.6.4	IT SAVEL LATING	S offer Tart
6.6.4		128
6.6.4	Geometry Corner Radii	
	Geometry	128

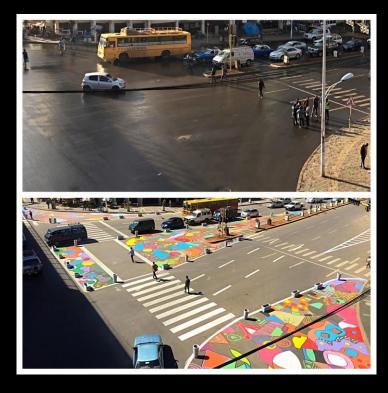
	6.7	Designing for Freight and Service Operators	136
	6.7.1	Overview	136
		Speed	136
		Variations	133
	6.7.2	Freight Networks	138
	6.7.3	Freight Toolbox	140
	6.7.4	Geometry	141
	6.7.5	Freight Management and Safety	143
	6.8	Designing for People Doing Business	144
	6.8.1	Overview	144
		Variations	148
	6.8.2	People Doing Business Toolbox	140
	6.8.3	Geometry	14
	6.8.4	Siting Guidance	14)
7	Utiliti	es and infrastructure	15
	7.1	Utilities	15:
	7.1.1	Underground Utilities Design Guidance	15-
	7.1.2	Underground Utilities Placement Guidance	15
	7.2	Green Infrastructure	15
	7.2.1	Green Infrastructure Design Guidance	15
	7.2.2	Benefits of Green Infrastructure	15
	7.3	Lighting and Technology	16
	7.3.1	Lighting Design Guidance	16:
	Opera	tional and Management Strategies	16
	8.1	Overview	16
	8.2	General Strategies	16
	8.3	Demand Management	16
		Network Management	16
	8.4		
	8.4 8.5	Volume and Access Management	17
	8.5	Volume and Access Management	17
	8.5 8.6	Volume and Access Management Parking and Curbside Management	17
9	8.5 8.6 8.7 8.8	Volume and Access Management Parking and Curbside Management Speed Management	17 17 17
9	8.5 8.6 8.7 8.8	Volume and Access Management Parking and Curbside Management Speed Management Signs and Signals	17 17 17 17
9	8.5 8.6 8.7 8.8 Desig	Volume and Access Management Parking and Curbside Management Speed Management Signs and Signals	17 17 17 17 17 17
9	8.5 8.6 8.7 8.8 Desig	Volume and Access Management Parking and Curbside Management Speed Management Signs and Signals n Controls Design Speed	17) 17 17 17 17 17 17 17 17 18 18

Contents

Section C: Street Transformations

Street	5	187
10.1	Street Design Strategies	188
10.2	Street Typologies	190
10.3	Pedestrian-Priority Spaces	192
10.3.1	Pedestrian-Only Streets	194
	Example 1: 18 m	194
	Example 2: 22 m	196
	Case Study: Strøget; Copenhagen, Denmark	198
10.3.2	Laneways and Alleys	200
	Example 1:8 m	200
	Example 2: 10 m	202
	Case Study: Laneways of Melbourne, Australia	204
10.3.3	Parklets	206
	Example	200
	Case Study: Pavement to Parks;	210
	San Francisco, USA	
10.3.4	Pedestrian Plazas	212
	Example	212
	Plaza Configurations	215
	Case Study: Plaza Program;	210
	New York City, USA	
10.4	Shared Streets	218
10.4.1	Commercial Shared Streets	220
	Example 1: 12 m	220
	Example 2: 14 m	223
	Case Study: Fort Street; Auckland,	224
	New Zealand	
10.4.2	Residential Shared Streets	226
	Example 1:9 m	226
	Example 2: 10 m	221
	Case Study: Van Gogh Walk; London, UK	230

10.5	Neighborhood Streets	233
10.5.1	Residential Streets	234
	Example 1: 13 m	234
	Example 2: 16 m	23
	Example 3: 24 m	23
	Case Study: Bourke St.; Sydney, Australia	24
10.5.2	2 Neighborhood Main Streets	24
	Example 1: 18 m	24
	Example 2: 22 m	24
	Example 3: 30 m	24
	Case Study: St. Marks Rd.; Bangalore, India	24
10.6	Avenues and Boulevards	25
10.6.1	Central One-Way Streets	25
	Example 1: 18 m	25
	Example 2:25 m	25
	Example 3:31 m	25
	Case Study: Second Ave.; New York City, USA	25
10.6.2	Central Two-Way Streets	26
	Example 1: 20 m	26
	Example 2:30 m	26
	Example 3: 40 m	28
	Case Study: Götgatan; Stockholm, Sweden	26
10.6.3	Transit Streets	28
	Example 1: 16 m	28
	Example 2:32 m	27
	Example 3: 35 m	27
	Case Study: Swanston St.; Melbourne,	27
	Australia	
10.6.4	Large Streets with Transit	27
	Example 1: 32 m	27
	Example 2:38 m	27
	Case Study: Boulevard de Magenta;	28
	Paris, France	
10.6.5	Grand Streets	28
	Example 1: 52 m	28
	Example 2:62 m	28
	Example 3: 76 m	2.8
	Case Study: Av. 9 de Julio; Buenos Aires,	28
	Argentina	

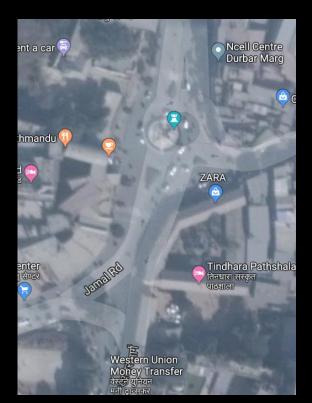

	Special Conditions
10.7.1	Elevated Structure Improvement
	Example: 34 m
	Case Study: A8ernA; Zaanstad,
	The Netherlands
10.7.2	Elevated Structure Removal
	Example: 47 m
	Case Study: Cheonggyecheon; Seoul,
	South Korea
10.7.3	Streets to Streams
	Example: 40 m
	Case Study: 21st Street; Paso Robles, USA
10.7.4	Temporary Street Closures
	Example: 21 m
	Types of Temporary Street Closures
	Case Study: Raahgiri Day; Gurgaon, India
10.7.5	Post-Industrial Revitalization
	Example: 20 m
	Case Study: Jellicoe St.; Auckland,
	New Zealand
10.7.6	Waterfront and Parkside Streets
	Example: 30 m
	Case Study: Queens Quay; Toronto, Canada
10.7.7	Historic Streets
	Example
	Case Study: Historic Peninsula;
	Istanbul, Turkey
10.8	Streets in Informal Areas
10.8.1	Overview
10.8.2	Existing Conditions
10.8.3	Recommendations
	Case Study 1: Calle 107; Medellin, Colombia
	Case Study 2: Khayelitsha; Cape Town,
	South Africa
	Case Study 3: Street of Korogocho;
	Nairobi, Kenya
	the second se

11	Intersections				
	11.1	Intersection Design Strategies	336		
	11.2	Intersection Analysis	338		
	11.3	Intersection Redesign	339		
	11.4	Mini Roundabout	340		
	11.5	Small Raised Intersection	342		
	11.6	Neighborhood Gateway Intersection	344		
	11.7	Intersection of Two-Way and One-Way Streets	346		
	11.8	Major Intersection: Reclaiming the Corners	348		
	11.9	Major Intersection: Squaring the Circle	350		
	11.10	Major Intersection: Cycle Protection	352		
	11.11	Complex Intersection: Adding Public Plazas	354		
	11.12	Complex Intersection: Improving Traffic Circles	356		
	11.13	Complex Intersection: Increasing Permeability	358		

Resources	361
Acknowledgments	362
KeyTerms	366
Notes	368
References	372
Appendix	377
A. Conversion Chart	377
B. Metrics Charts	378
Physical and Operational Changes	378
Use and Functional Changes	381
Evaluating the Impacts	
C. Summary Chart of Typologies Illustrated	386
D. User Section Geometries	388
E. Assumptions for Intersection Dimensions	390
Index	392



Tactical Urbanism

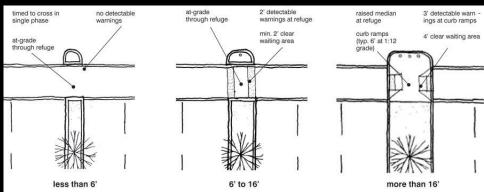


Must address DRAINAGE

Arniko Highway intersections

Durbar Marg

Curb Extensions

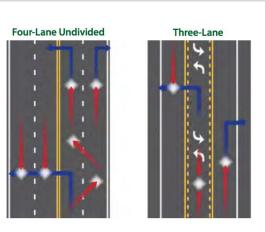


Durbar Marg !!!???

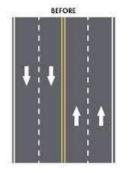
Arniko Highway Intersections

Must provide adequate space for people to stand, esp. those with disability

Median Refuge


Example: Shankhadhar Chowk, Thimi

Road Diets


- Improve safety
- 2-lane + 1 center-turn lane capacity is 20,000 ADT
- 4-lane + 1 center-turn lane capacity is 52,000 ADT
- Ringroad 2012 ADT ranges from 18,000 50,000 ADT

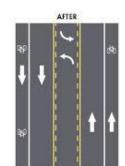


Table 6.2.8 Road Capacity

Table 0.2.0 Road Capacity		
	Urban (Inside the Ring Road)	Rural (Outside the Ring Road)
Narrow 2-lane	6,000	7,000
2-lane	17,000	20,000
4-lane	52,000	57,000
6-lane	75,000	83,000

Conclusion

- Kathmandu is a very walkable and bikeable metro
- Stop widening roads to accommodate more cars induced traffic
- Distribute vehicular traffic by opening critical road connections
- Modify alignments to improve safety
- Invest big in transit and BRT for mass transportation
- Re-design streets (long-term) to made it safe for pedestrians
- Use tactical urbanism (short-term) to make streets safe
- Implement Community Led Infrastructure
 Development

Sagar Onta, PE, PTOE Denver Engineering Director <u>sagaronta477@gmail.com</u> 98510-50165

Questions and Discussion

